skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gassmoeller, Rene"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We are pleased to announce the release of ASPECT 2.5.0. ASPECT is the Advanced Solver for Problems in Earth's ConvecTion. It uses modern numerical methods such as adaptive mesh refinement, multigrid solvers, and a modular software design to provide a fast, flexible, and extensible mantle convection solver. ASPECT is available from https://aspect.geodynamics.org/ and the release is available from https://geodynamics.org/resources/aspect and https://github.com/geodynamics/aspect/releases/tag/v2.5.0 Among others this release includes the following significant changes: ASPECT now includes version 0.5.0 of the Geodynamic World Builder. (Menno Fraters and other contributors) ASPECT's manual has been converted from LaTeX to Markdown to be hosted as a website at https://aspect-documentation.readthedocs.io. (Chris Mills, Mack Gregory, Timo Heister, Wolfgang Bangerth, Rene Gassmoeller, and many others) New: ASPECT now requires deal.II 9.4 or newer. (Rene Gassmoeller, Timo Heister) ASPECT now supports a DebugRelease build type that creates a debug build and a release build of ASPECT at the same time. It can be enabled by setting the CMake option CMAKE_BUILD_TYPE to DebugRelease or by typing "make debugrelease". (Timo Heister) ASPECT now has a CMake option ASPECT_INSTALL_EXAMPLES that allows building and install all cookbooks and benchmarks. ASPECT now additionally installs the data/ directory. Both changes are helpful for installations that are used for teaching and tutorials. (Rene Gassmoeller) Changed: ASPECT now releases the memory used for storing initial conditions and the Geodynamic World Builder after model initialization unless an owning pointer to these objects is kept. This reduces the memory footprint for models initialized from large data files. (Wolfgang Bangerth) Added: Various helper functions to distinguish phase transitions for different compositions and compositional fields of different types. (Bob Myhill) Added: The 'adiabatic' initial temperature plugin can now use a spatially variable top boundary layer thickness read from a data file or specified as a function in the input file. Additionally, the boundary layer temperature can now also be computed following the plate cooling model instead of the half-space cooling model. (Daniel Douglas, John Naliboff, Juliane Dannberg, Rene Gassmoeller) New: ASPECT now supports tangential velocity boundary conditions with GMG for more geometries, such as 2D and 3D chunks. (Timo Heister, Haoyuan Li, Jiaqi Zhang) New: Phase transitions can now be deactivated outside a given temperature range specified by upper and lower temperature limits for each phase transition. This allows implementing complex phase diagrams with transitions that intersect in pressure-temperature space. (Haoyuan Li) New: There is now a postprocessor that outputs the total volume of the computational domain. This can be helpful for models using mesh deformation. (Anne Glerum) New: Added a particle property 'grain size' that tracks grain size evolution on particles using the 'grain size' material model. (Juliane Dannberg, Rene Gassmoeller) Fixed: Many bugs, see link below for a complete list. (Many authors. Thank you!). A complete list of all changes and their authors can be found at https://aspect.geodynamics.org/doc/doxygen/changes_between_2_84_80_and_2_85_80.html Wolfgang Bangerth, Juliane Dannberg, Menno Fraters, Rene Gassmoeller, Anne Glerum, Timo Heister, Bob Myhill, John Naliboff, and many other contributors. 
    more » « less
  2. Abstract Mantle plumes are thought to recycle material from the Earth's deep interior. One constraint on the nature and quantity of this recycled material comes from the observation of seismic discontinuities. The detection of the X‐discontinuity beneath Hawaii, interpreted as the coesite‐stishovite transition, requires the presence of at least 40% basalt. However, previous geodynamic models have predicted that plumes cannot carry more than 15%–20% of high‐density basaltic material. We propose this contradiction can be resolved by taking into account the length scale of chemical heterogeneities. While previous modeling studies assumed mechanical mixing on length scales smaller than the model resolution, we here model basaltic heterogeneities with length scales of 30–40 km, allowing for their segregation relative to the pyrolitic background plume material. Our models show that larger basalt fractions than previously thought possible—exceeding 40%—can temporarily accumulate within plumes at the depth of the X‐discontinuity. Two key mechanisms facilitate this process: (a) The random distribution of basaltic heterogeneities induces large temporal variations in the basalt fraction with cyclical highs and lows. (b) The high density contrast between basalt and pyrolite below the coesite‐stishovite transition causes ponding and accumulation of basalt within the rising plume at that depth. Because the statistical effect dominates, large values of 35%–40% basalt are only sustained temporarily. These results further constrain the chemical composition of the Hawaiian plume. Beyond that, they provide a geodynamic mechanism that explains the seismologic detection of the X‐discontinuity and highlights how recycled material is carried toward the surface. 
    more » « less